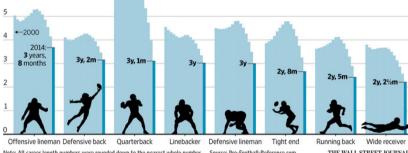
Introduction to Time-to-Event Data

COVID's toll on smell and taste: what scientists do and don't know

Researchers are studying the sensory impact of the coronavirus, how long it lasts and what can be done to treat it.


How quickly do the impaired senses return?

For most people, smell, taste and chemesthesis recover within weeks. In a study published last July \$\frac{8}{2}\$, 72% of people with COVID-19 who had olfactory dysfunction reported that they recovered their sense of smell after a month, as did 84% of people with taste dysfunction. Claire Hopkins, an ear, nose and throat consultant at Guy's and St Thomas' Hospital in London, and her colleagues similarly observed \$\frac{9}{2}\$ a speedy return of the senses: they followed 202 patients for a month, and found that 49% reported complete recovery over that time, and a further 41% reported an improvement.

Time in the NFL

The average length of an NFL career has seen a sharp drop since 2000. A look at the average number of years played before retirement, sorted by position.

6 years played before retirement

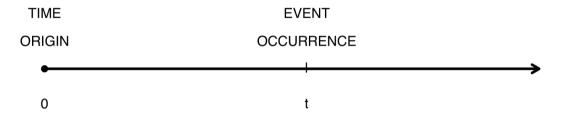
Note: All career length numbers were rounded down to the nearest whole number. Source: Pro-Football-Reference.com

THE WALL STREET JOURNAL.

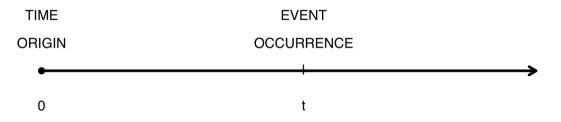
Time to Event Data

Oftentimes, longitudinal data measures **the time until an event**, and want to know the **associated risk factors**.

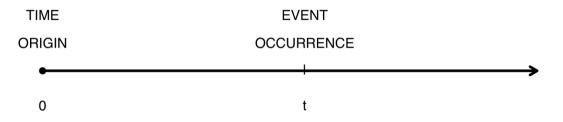
The analysis of time-to-event data is often called **survival analysis**.


► The goal of survival analysis is characterizing the **time until an event** (e.g., death).

- ► The goal of survival analysis is characterizing the **time until an event** (e.g., death).
- ▶ This is **longitudinal data** where we keep asking "has it happened?"


- ► The goal of survival analysis is characterizing the **time until an event** (e.g., death).
- ▶ This is **longitudinal data** where we keep asking "has it happened?"
- Often have to handle censoring and truncation.

- ► The goal of survival analysis is characterizing the **time until an event** (e.g., death).
- ▶ This is **longitudinal data** where we keep asking "has it happened?"
- ▶ Often have to handle **censoring** and **truncation**.
 - Censoring refers to individuals who we stop observing before the event has happened.


- ► The goal of survival analysis is characterizing the **time until an event** (e.g., death).
- ▶ This is **longitudinal data** where we keep asking "has it happened?"
- ▶ Often have to handle **censoring** and **truncation**.
 - Censoring refers to individuals who we stop observing before the event has happened.
 - ► **Truncation** refers to individuals who are excluded from the study because their event did not happen during a defined window.

1. Time origin precisely specified for all individuals.

- 1. **Time origin** precisely specified for all individuals.
- 2. The **event occurence** needs to be clearly (unambiguously) defined.



- 1. **Time origin** precisely specified for all individuals.
- 2. The **event occurence** needs to be clearly (unambiguously) defined.
- 3. The measurement scale for time has to be selected.

Discrete and Continuous Time

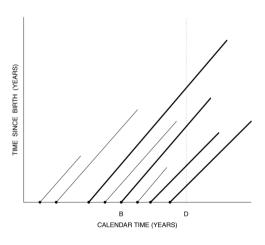
We will differentiate based on whether the time scale is **discrete** or **continuous**.

What makes Survival Analysis special?

An individual who **never** has an **observed** event is said to be **censored**.

- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.

- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.
- An individual lost due to follow-up is right censored


- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.
- An individual lost due to follow-up is right censored
- Describe three types of right censoring:

- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.
- An individual lost due to follow-up is right censored
- Describe three types of right censoring:
 - ► **Type I:** Where the censoring time is pre-determined and known.

- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.
- An individual lost due to follow-up is right censored
- Describe three types of right censoring:
 - **Type I:** Where the censoring time is pre-determined and known.
 - **Type II:** The number of events is pre-determined and known.

- An individual who never has an observed event is said to be censored.
- ▶ **Left** versus **right** censoring based on whether event happened *before* or *after* the observation period.
- An individual lost due to follow-up is right censored
- Describe three types of right censoring:
 - **Type I:** Where the censoring time is pre-determined and known.
 - ▶ **Type II:** The number of events is pre-determined and known.
 - Random Censoring: The censoring times are random quantities themselves.

Ignoring censoring will bias your results, and ignores m information you've collected.	uch of the

Occurs when individuals are excluded from your sample based on when their event occurs.

- Occurs when individuals are excluded from your sample based on when their event occurs.
- ▶ **Left truncation** considers only individuals who had not had an event by the time origin.

- Occurs when individuals are excluded from your sample based on when their event occurs.
- ► **Left truncation** considers only individuals who had not had an event by the time origin.
- Right truncation considers only individuals who have had an event by the end of the study.

- Occurs when individuals are excluded from your sample based on when their event occurs.
- ▶ **Left truncation** considers only individuals who had not had an event by the time origin.
- Right truncation considers only individuals who have had an event by the end of the study.
- ► This is a type of **sampling bias**.

Under truncation you **must** perform **conditional inference** in order to make valid conclusions.

▶ Time-to-event data measures **event time** as the outcome of interest.

- ▶ Time-to-event data measures **event time** as the outcome of interest.
- ► **Survival analysis** characterizes how long until an event of interst (and the effects of covariates on this).

- ▶ Time-to-event data measures **event time** as the outcome of interest.
- ► **Survival analysis** characterizes how long until an event of interst (and the effects of covariates on this).
- ▶ The priamry hurdles in conducting survival analysis are **censoring** and **truncation**.

- Time-to-event data measures event time as the outcome of interest.
- ► **Survival analysis** characterizes how long until an event of interst (and the effects of covariates on this).
- ► The priamry hurdles in conducting survival analysis are **censoring** and **truncation**.
- ▶ **Censoring** refers to individuals who **are included** but who do not have the event.

- Time-to-event data measures event time as the outcome of interest.
- ► **Survival analysis** characterizes how long until an event of interst (and the effects of covariates on this).
- ► The priamry hurdles in conducting survival analysis are **censoring** and **truncation**.
- **Censoring** refers to individuals who **are included** but who do not have the event.
- ▶ Truncation refers to individuals who are not included because of their event time.